轉基因食品檢測

Genetically Modified Food Detection

一. 課前思考

有機黃豆營養高+豆渣更健康

- > 來源: http://mag.udn.com/mag/life/storypage.jsp?f_ART_ID=469956
- ▶ 日期: 2013/08/06

日前主婦聯盟公布,台灣黃豆幾乎仰賴進口,每年從美國、巴西進口,九成都是基因改造黃豆。然而基改黃豆在國外很少人吃,主要用來餵牛豬,提煉生質柴油,在台灣卻當成特選黃豆,直接吃下肚,安全堪憂。

國內學者指出,基改黃豆抗農藥、抗除草劑,農民為了增加收成大量噴洒,所以基改黃豆的除草劑含量都特別高,在基改黃豆田裡,連一隻蜜蜂都看不到。基改黃豆不是為了增加營養價值,而是為了提高產量。基改黃豆的 DNA 被破壞之後,40 種以上的蛋白質也跟著改變,恐怕會引發過敏反應。

雖然在科學上尚未能對基因改造食品的安全性給予明確答案,但已有奧地利、義大利科學家在 2008 年分別發表研究指出,基改黃豆所餵養的豬不能生育,顯示長期食用基因改造作物,動物的生育能力和免疫能力會受影響。儘管衛生單位認為,基改黃豆安全無虞,但其他的國家卻不敢輕忽風險。歐盟就規定,食品只要添加基改黃豆超過 0.9%就要標示,韓國 3%、澳紐 1%,台灣最寬鬆,規定 5%,而且絕大多數的產品根本都沒標,以致國內市售各種黃豆食品包括豆漿,大多使用成本較便宜的基改黃豆,實在難安心。

至於歐美最多人吃的有機黃豆,當然是非基因改造豆,而且是完全天然種植,它的營養價值優於一般豆類,就是因為栽種條件受到嚴格規範,不可使用化肥及農藥。有機黃豆不論在生產與加工販售過程,都必須通過層層驗證與審查,才能獲得合格認證。

有機黃豆很難用肉眼辨識,無法經由色澤、顆粒大小等外觀來辨別,色斑是正常現象。真正有機作物只能透過認證來認明,最簡單有效的辨識方法就是看它是否有合格的有機認證標章。民眾選購時應注意是否顆粒飽滿、大小顏色相近、無雜色、無黴斑、無蟲蛀、無破皮。有機黃豆為非基因改造,蛋白質含量超過 40%,營養價高於基因改造黃豆。但是國人吃黃豆攝取多來自過度加工的黃豆食品,不僅不是有機,而且經過繁複加工,大部分的膳食纖維、機能性成分都跟著流失,營養價值所剩無幾。

思考題:

1.	你知道什麼是基因改造食品嗎?
2.	試舉例日常生活中常見的基因改造食品。

基改食品安全嗎? 學者警告有風險

來源: http://e-info.org.tw/node/75203 (公共電視台北報導)

日期: 2012年3月15日

瘦肉精風暴持續延燒,也讓許多民眾開始關心食品安全問題,15日有學者提出警告,很多西方食品都是基因改造的食品,這些食品吃多了,除了會過敏,也有致癌的風險,呼籲政府,應加強「基改食品」的標示,讓消費者有所選擇,這樣才能讓消費者吃得安心。

學者說,所謂基因改造,是指用人為方式改變物種的基因排序,雖然可以讓農作物不再受飛蛾幼蟲的危害,增加農作物生產量,但也可能因此改變土壤的微生物,甚至有些基改作物為了抗蟲,還植入具有抗藥性的抗生素,對環境和人類都是一種傷害。

由於生活中有越來越多、可能含有基因改造的食品,像是黃豆、玉米、植物油、起司、洋芋片等,因此學者呼籲政府、應加強「基改食品」的標示,同時也呼籲大賣場及連鎖速食業者,應主動告知消費者,店內使用的黃豆、玉米是否為基因改造,這樣才能讓消費者吃得安心。

思	考題:
1.	基因改造食品有什麼好處及壞處?
2.	你贊同加入食品標籤標示基因改造食品嗎?為什麼?
3.	基因改造技術除了運用在食品上?還有什麼方面會運用到此技術?

他從白蟻腸道 育出二代環保豬

來源: http://e-info.org.tw/node/87441 (聯合晚報台北報導)

日期: 2013年7月19日

東海講座教授鄭登貴從白蟻身上找到神奇的微生物基因,未來可望培育出吃木屑長大的豬。他還利用白蟻腸道的微生物,開發有機肥料,種出沒有蟲害、更鮮美的蔬菜,並開發保健食品。

鄭登貴幾年前在牛胃中找出微生物基因,利用基因轉殖技術,從牛胃的微生物分離出基因,注入豬的 受精卵,培育出跟牛一樣吃草的環保豬,讓豬的隻胰臟可以分泌大量植酸分解纖維素,讓豬也可以吃 草取得能量,且排泄物不髒不臭,降低環境污染。

他從白蟻腸道內的微生物篩出五種基因酶,比牛胃微生物的消化力量更徹底,目前已先用老鼠做實驗, 6月基改鼠已出生,接下來要培育第二代環保豬,讓豬吃木屑取得能量,減少對進口飼料玉米的依賴, 也減少豬糞的碳排放量。

鄭登貴說,白蟻腸道內的微生物有很多寶藏,除了計畫培育吃木屑的環保豬,也已成功開發出微生物 發酵有機質肥料,能促進植物氮、磷、鉀肥吸收,提高農作物的收成及甜度,還可增加花色的鮮豔度 及開花數量。

思	有趣:
1.	根據以上報導,怎麼能夠培育出環保豬?
2.	培育環保豬的好處有什麼? 會有什麼的不良後果嗎?
3.	從以上三篇報導,試綜合分析何謂基因改造,及其好處及壞處?
4.	若你是一名生物科學家,現在要利用基因改造技術去製造一種新品種(生物/食品),你會怎麼做?

二・轉基因背景

2.1 什麼是轉基因食品?

轉基因食品,又稱為基因改造食品,是指利用基因工程手段,人為的將某些生物的基因轉移到其他生物中去,改造生物的遺傳物質,使其在營養品質、消費品質等方面轉變成人類所需要的模樣,這些加入了非原有基因的生物稱為轉基因生物,以轉基因生物為直接食品,或以此作原料加工生產的食品就是轉基因食品。如玉米、大豆、黃金米(其介紹見以下報章)等就是常見的轉基因食品。

菲農毀基改米 數千科學家連署痛斥

來源: http://udn.com/NEWS/WORLD/WOR4/8120481.shtml

日期: 2013/08/26

四百名反對基因改造作物的示威者八日闖入菲律賓比科爾地區 基改「黃金米」的試驗田,將黃金米連根拔除。此舉挑動了學界 的敏感神經,全球數千名科學家罕見的連署力挺黃金米,認為人 們不應該出於恐懼全面排斥基改作物。

紐約時報報導,黃金米由非營利組織「國際水稻研究所」的科學 家研發,他們在水稻裡植入來自玉米和細菌的基因,讓水稻胚乳 累積β胡蘿蔔素,由於胚乳呈金黃色,因此將這種水稻稱為黃金 米。菲律賓政府將決定是否容許黃金米在一般農田種植。

目前市面上的基改作物若不是耐除草劑,就是抗蟲害,主要是對農民有利,消費者並未直接受惠。黃金米則不同。食物中的β胡蘿蔔素可以被人體分解成維生素A吸收利用。每年全球有廿五萬到五十萬名兒童因缺乏維生素A而失明,每年有兩百萬亞洲與非洲人因缺乏維生素A、免疫能力低落而染病死亡。科學家希望藉由黃金米,讓世界各地以米飯為主食者有充足的維生素A。

一名科學家在馬尼拉郊區的黃金米實驗田 說明基改作物的特性。菲律賓一處黃金米實 驗田遭反對者破壞,引發全球數千名科學家 連署聲明。小圖左為一般米,右為黃金米。 (路透)

帶頭拔除黃金米的菲律賓農夫說:「我們不希望菲律賓人被基改實驗利用,尤其是我們的小孩。」

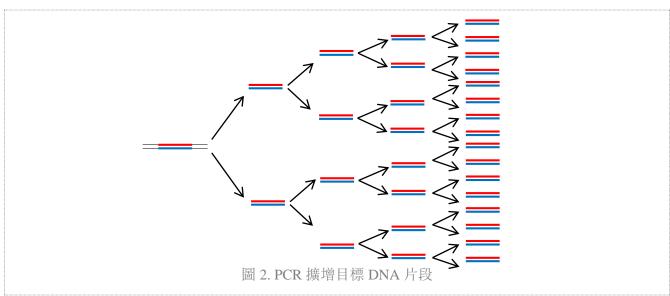
連署的科學家則指出,基改技術既能改善開發中國家人民營養不良的問題,也能讓不知道自己營養不均的已開發國家人民攝取足夠的營養,不能一味反對。他們還點名「綠色和平」等團體以製造恐懼的手法將基改作物汙名化。 紐約大學生物學教授普魯格南說:「人們對基改作物有太多錯誤觀念。科學家植入黃金米的基因並不是什麼奇怪的東西,這種基因在南瓜、甜瓜和胡蘿蔔裡都找得到。西方國家對基改作物的批評,很多都是因為不了解開發中國家的饑荒和營養不良有多悲慘。」

帶頭連署的沙烏地阿拉伯阿布杜拉國王科技大學教授尼娜·費多羅夫說:「科學家早該出面疾呼『別再扯謊了, 別再製造無謂的恐慌』,基改技術可拯救數百萬人的性命。」

黄金米二ooo年曾登上時代雜誌封面,微軟董事長蓋茲的慈善基金會也支持讓黃金米進行測試,以幫助非洲解決營養不良問題。反對者則指控黃金米是推廣基改作物的「特洛伊木馬」,他們強調基改作物的風險仍未被充分了解,「綠色和平」發言人歐坎波說,該組織仍寧願站在「審慎的那一方」,反對任何基改作物。

2.2 轉基因食品的好處有什麼?

通過轉基因的手段,人們可以按照自己的意願得到所需要的食品。例如,將抗病蟲害、抗除草劑等基因轉入農作物,就可以獲得具有相應基因的品種,還可以縮短獲得新品種的時間,提高農作物的產量、增加作物的營養價值,生產一些高附加值的物質,如有藥用價值的物質、維生素、工業上用的生物高分子聚合物等。


2.3 轉基因食品有對身體有負面影響嗎?

世界上第一例轉基因植物誕生於1983年,到今還沒有證據表明轉基因食品會對人體健康造成危害。但是,在基因操作過程中,可能發生意想不到的變化。對於健康和環境的長期影響,科學研究還不深入。因此,很多國際組織、國家和地區,如歐盟、英國、澳大利亞、新西蘭、香港等,都制定了相應的法律、法規,對轉基因產品進行管理和標注,以便進行監控。

三. 實驗介紹

2.1 PCR-聚合酶鏈反應

聚合酶鏈反應(Polymerase Chain Reaction, PCR)是一種體外核酸擴增技術,是用於擴增一小段已知的 DNA 片斷或單個基因,甚至是某個基因的一部分,使所要研究的目標基因或 DNA 片段能於數小時內擴增至十萬至百萬倍,使肉眼能直接觀察和判斷(如圖 2 所示,紅色和藍色是目標的雙鏈 DNA 片段,使用 PCR 可以不斷複製出相同的 DNA 片段,用作擴增之用),因此在分析 DNA 和檢測鑒定中,PCR 是十分重要的生物技術,使我們可從一根毛發、一滴血、甚至一個細胞中擴增出足量的 DNA 用來分析研究。在過去,要擴增 DNA 片段需要幾天幾星期才能完成,現在用 PCR 技術幾小時便可完成,且具有特異、敏感、產率高、快速、簡便、重複性好、易自動化等突出優點,大大增加了生物科學研究的效率。

3.2 DNA 複製

PCR 技術的原理是利用 DNA 複製來完成擴增的目的, 所以說 PCR 就是重覆多次的 DNA 複製過程,在了解 PCR 之前,就必先了解什麼是 DNA 複製。在 PCR 技術中的複製過程中有幾個基本組成 1 元件:

元件	說明
DNA 模板 (template)	含有需要擴增的 DNA 片斷,即要複製的目標 DNA 片段
2個引子 (primer)	決定了需要 PCR 擴增的起始和終止位置
DNA 聚合酶 (polymerase)	聚合酶用作催化 DNA 複製過程,使互補的核苷酸碱基能夠配對在模版上。
脫氧單核苷酸(dNTP)	與模板互補的核苷酸能用於構造新的互補鏈
緩衝體系	提供適合聚合酶行使功能的化學環境

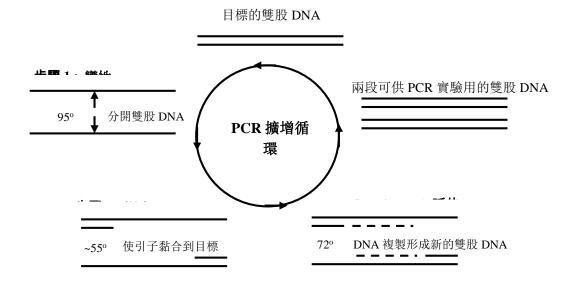
開始時,一種稱為 DNA 聚合酶的蛋白質(上表第三列)會找到 DNA 長鏈中某個特殊位置,把雙股螺旋 DNA 如拉鏈般地分開成為單股,這樣的單股 DNA 就是表中第一列所說的 DNA 模版,接下來引子(上表第二列)實質是一 DNA 片段,它帶有與模版某一位點互補的碱基對,兩個引子分別會黏合兩個模版上,因此引子能夠決定起始和結束的位置。在複製過程中,DNA 聚合酶在外找到與模版互補的核苷酸(上表第四列),核苷酸會黏合在模版上,形成的一對新 DNA 與原本的 DNA 一模一樣。

3.3 PCR 反應步驟

一般的 PCR 反應由 20 到 30 個循環組成,每個循環包括以下 3 個步驟:

變性(denaturation)

利用高溫(93-97℃)使雙鏈 DNA 分離,高溫能將雙股 DNA 鏈中用作相連的氫鍵打斷。在第一個循環之前,通常加熱長一些時間(1-2 分鐘)以確保模板和引子完全分離,僅以單鏈形式存在。


退火(Annealing)

在 DNA 雙鏈分離後,降低溫度使得引子可以結合於單鏈 DNA 上。此階段的溫度通常低於引子熔點 5 ℃。錯誤的黏合溫度可能導致引子不與模板結合或者錯誤地結合。該步驟時間 1-2 分鐘。

★注意: Annealing 本意為黏合,在 PCR 反應步驟中可理解為退火的意思。

延伸(Extension)

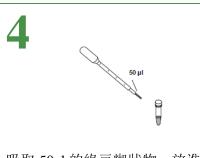
引子結合後,DNA 聚合酶會開始沿著 DNA 鏈合成互補鏈,而達到複製擴增之意。此階段的溫度決定於 DNA 聚合酶的最適溫度,而時間則決定於聚合酶的作用,以及需要合成的 DNA 片斷長度。估計合成 1000bp 大概需要 1 分鐘。

三. 實驗試劑

名	稱	份量	數量
InstaGene Matrix,		500ul	3 支
$ddH_2O(),$	水	40ml	1 支
GMO control DNA	GMO 陽性對照 DNA	45ul	1 支
GMO Primer	GMO 引物	100ul	1 支
Plant Primer	植物引物	100ul	1 支
Agarose	瓊脂糖	1.2g	1支
1x TAE buffer	1x TAE 電泳緩衝液	50ml	1 支
Loading Dye	上樣染色液	100ul	1 支
100x Fast Blast DNA Stain	DNA 染色劑	50ul	1 支

四. 實驗步驟

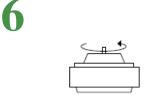
4.1 提取 DNA


在 3 支擰蓋離心管上分別標記 non-GMO, Test A,Test B"

稱量大約 1g 的非基因改做綠豆, 然後放進研磨中

3 加入2次5ml水

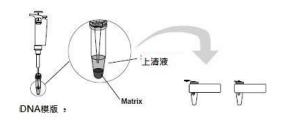
加入 5ml 的水,然後研磨 2 分鐘, 令綠豆變成糊狀。 再加入 5ml 的水,然後繼續研磨, 令糊狀物更滑。



吸取 50ul 的綠豆糊狀物,放進"non-GMO"的小管

★注意小管中已有 500ul 的 InstaGene Matrix。

對被檢測食物(A 和 B)重複進行 步驟 2-5


手指分別輕彈兩管管尖,然後放入 95 度水浴鍋中 5min。水溶後離心 5 分鐘,備用。

4.2 PCR 反應

- 1. 標記 8 支 PCR 小管
- 2. 標記 8 管 PCR 蓋離心管中,再放於發泡膠支架(foam holder),放於冰浴中。
- 3. 按照上表中放入用移液槍吸取 20μl 對應的 Master Mix(見表 1) 於每一支 PCR 管中,注意取每次吸取不同種類的 Master Mix 時,要用新的 tip 頭

4. 用移液槍吸取 20μl 對應的 DNA(見表 1)於每一支 PCR 管中,蓋上管蓋;注意加不同種類的 DNA 時要使 用不同 tip 頭,在吸取時只吸取上清液,不要吸到下層 Matrix

5. 將6支PCR管放入PCR儀,進行擴增。

表 1. PCR 小管

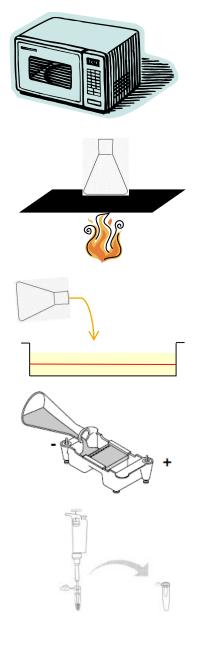
Tube	Master Mix	DNA	備註
1	20μl Plant MM (green)	20μl Non-GMO food control DNA	非基因改做植物 +植物引物
2	20μl GMO MM (red)	20μl Non-GMO food control DNA	非基因改做植物 +引物
3	20μl Plant MM (green)	20μl Test food(A) DNA	檢測食物(A) +植物引物
4	20μl GMO MM (red)	20μl Test food(A) DNA	檢測食物(A) +GMO 引物
5	20µl Plant MM (green)	20μl Test food(B) DNA	檢測食物(B) +植物引物
6	20μl GMO MM (red)	20μl Test food(B) DNA	檢測食物(B) +GMO 引物
7	20µl Plant MM (green)	20μl GMO control DNA	GMO 陽性植物 DNA 對照 +植物引物
8	20μl GMO MM (red)	20μl GMO control DNA	GMO陽性植物 DNA 對照 +GMO 引物

4.3 製備瓊脂糖凝膠

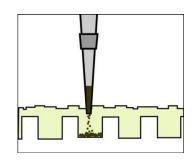
1. 拿出電泳槽中的凝膠槽,用膠紙把兩邊封好。

2. 在三角椎形瓶加入 0.6g 的瓊脂糖和 40ml 的 1x TBE

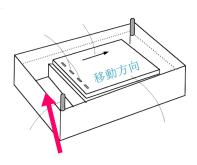
0.6g 瓊脂 40ml 1x TBE

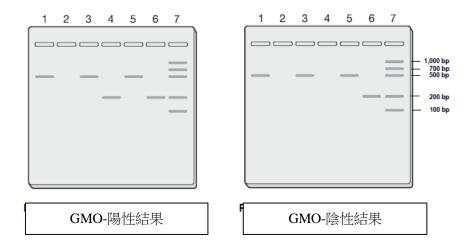

3A. 微波爐加熱法

一開始時用中火加熱 3 分鐘,取出後小心轉動,使試劑混合,然後每次加熱 30 秒,取出後轉動使之混合,直至所有粉末溶解,溶液呈透明才停止加熱,然後放涼至 60°C,並加入 SYBR Green。


3B. 加熱版法

把三角椎形瓶放上加熱版,不時小心轉動,使試劑混合,直至所有粉未溶解和溶液呈透明,然後放涼至 60° C,並加入 SYBR Green。


- 4. 涼卻後把把溶液慢慢倒入凝膠槽中,大約 0.5 0.75cm 厚(注意不要產生太多氣泡),圖中所示為凝膠槽側面,注意倒溶液約到紅線位置。溶液倒完後把梳垂直插進尚未凝固的溶液中,靜待 10 15 分鐘。
- 5. 凝膠凝固後,慢慢將梳取出,撕下膠紙,把凝膠槽放回電泳槽,有孔的一邊放在黑色(負極)那一邊,加入緩衝液 1xTBE,份量為覆蓋凝膠,並高出 3mm 左右。(注意:電泳槽中和凝膠所用的電泳緩衝液必須是同一批製備的)。再加入 Sybr Green。
- 6. 安裝好電泳裝置後,將 PCR 小管放於無蓋離心管中,加入 10μl 的 Loading dye 於每一個樣品中,用移液槍吸噴 3 次,注意每次需用 新的 tip 頭


8. 蓋上凝膠槽的蓋子,接通電源,以100V 電壓,30分鐘時間進行電泳, DNA會由負極向正極移動(黑色移向紅色方向)。如果金屬片貼附得 很好,那麼通電的時候,電極附近就會産生氣泡(紅色箭頭位置)。 30分鐘後觀察移動情況,切斷電流,並將凝膠小心地從凝膠槽中取 出。

9. 拿出凝膠後,把凝膠放在Blue Light Box上,在sybr Green的染色下,DNA能夠在藍光下顯現

表 2. 於 PCR 小管內加入的樣品

Lane	Sample	樣本	體積
1	Non-GMO food control with plant primer	非基因改做植物 +植物引物[陰性對照]	20uL
2	Non-GMO food control with GMO primer	非基因改做植物 +引物[陰性對照]	20uL
3	Test food with plant primers	檢測食物 +植物引物	20uL
4	Test food with GMO primers	檢測食物 +GMO 引物	20uL
5	GMO positive DNA with plant primers	GMO 陽性植物 DNA 對照 +植物引物[陽性對照]	20uL
6	GMO positive DNA with GMO primer	GMO陽性植物 DNA 對照 +GMO 引物[陽性對照]	20uL
7	PCR molecular weight ruler	PCR 分子尺	20uL

思考題

如何解讀上圖	l結果?陽性和陰	性對照物有什麼	凭作用?	
				